4.4 Article

MCAK and Paclitaxel Have Differential Effects on Spindle Microtubule Organization and Dynamics

Journal

MOLECULAR BIOLOGY OF THE CELL
Volume 20, Issue 6, Pages 1639-1651

Publisher

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E08-09-0985

Keywords

-

Categories

Funding

  1. National Institutes of Health [GM-59618]
  2. American Heart Association predoctoral fellowship
  3. Indiana University Light Microscopy Imaging Facility

Ask authors/readers for more resources

Within the mitotic spindle, there are multiple populations of microtubules with different turnover dynamics, but how these different dynamics are maintained is not fully understood. MCAK is a member of the kinesin-13 family of microtubule-destabilizing enzymes that is required for proper establishment and maintenance of the spindle. Using quantitative immunofluorescence and fluorescence recovery after photobleaching, we compared the differences in spindle organization caused by global suppression of microtubule dynamics, by treating cells with low levels of paclitaxel, versus specific perturbation of spindle microtubule subsets by MCAK inhibition. Paclitaxel treatment caused a disruption in spindle microtubule organization marked by a significant increase in microtubules near the poles and a reduction in K-fiber fluorescence intensity. This was correlated with a faster t(1/2) of both spindle and K-fiber microtubules. In contrast, MCAK inhibition caused a dramatic reorganization of spindle microtubules with a significant increase in astral microtubules and reduction in K-fiber fluorescence intensity, which correlated with a slower t(1/2) of K-fibers but no change in the t(1/2) of spindle microtubules. Our data support the model that MCAK perturbs spindle organization by acting preferentially on a subset of microtubules, and they support the overall hypothesis that microtubule dynamics is differentially regulated in the spindle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available