4.4 Article

Direct and Indirect Roles of Cyclin-dependent Kinase 5 as an Upstream Regulator in the c-Jun NH2-Terminal Kinase Cascade: Relevance to Neurotoxic Insults in Alzheimer's Disease

Journal

MOLECULAR BIOLOGY OF THE CELL
Volume 20, Issue 21, Pages 4611-4619

Publisher

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E09-05-0433

Keywords

-

Categories

Funding

  1. Purdue Research Foundation
  2. National Institutes of Health [R01AG028679]

Ask authors/readers for more resources

Significant increase in JNK, c-Jun, and Cdk5 activities are reported in Alzheimer's disease (AD). Inhibition of c-Jun prevents neuronal cell death in in vivo AD models, highlighting it as a major JNK effector. Both JNK and Cdk5 promote neurodegeneration upon deregulation; however, Cdk5 has not been mechanistically linked to JNK or c-Jun. This study presents the first mechanism showing Cdk5 as a major regulator of the JNK cascade. Deregulated Cdk5 induces biphasic activation of JNK pathway. The first phase revealed c-Jun as a direct substrate of Cdk5, whose activation is independent of reactive oxygen species (ROS) and JNK. In the second phase, Cdk5 activates c-Jun via ROS-mediated activation of JNK. Rapid c-Jun activation is supported by in vivo data showing c-Jun phosphorylation in cerebral cortex upon p25 induction in transgenic mice. Cdk5-mediated biphasic activation of c-Jun highlights c-Jun, rather than JNK, as an important therapeutic target, which was confirmed in neuronal cells. Finally, Cdk5 inhibition endows superior protection against neurotoxicity, suggesting that Cdk5 is a preferable therapeutic target for AD relative to JNK and c-Jun.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available