4.8 Article

An improved general amino acid replacement matrix

Journal

MOLECULAR BIOLOGY AND EVOLUTION
Volume 25, Issue 7, Pages 1307-1320

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msn067

Keywords

amino acid substitutions; replacement matrices; JTT; WAG; maximum likelihood estimations; phylogenetic inference

Ask authors/readers for more resources

Amino acid replacement matrices are an essential basis of protein phylogenetics. They are used to compute substitution probabilities along phylogeny branches and thus the likelihood of the data. They are also essential in protein alignment. A number of replacement matrices and methods to estimate these matrices from protein alignments have been proposed since the seminal work of Dayhoff et al. (1972). An important advance was achieved by Whelan and Goldman (2001) and their WAG matrix, thanks to an efficient maximum likelihood estimation approach that accounts for the phylogenies of sequences within each training alignment. We further refine this method by incorporating the variability of evolutionary rates across sites in the matrix estimation and using a much larger and diverse database than BRKALN, which was used to estimate WAG. To estimate our new matrix (called LG after the authors), we use an adaptation of the XRATE software and 3,912 alignments from Pfam, comprising similar to 50,000 sequences and similar to 6.5 million residues overall. To evaluate the LG performance, we use an independent sample consisting of 59 alignments from TreeBase and randomly divide Pfam alignments into 3,412 training and 500 test alignments. The comparison with WAG and JTT shows a clear likelihood improvement. With TreeBase, we find that 1) the average Akaike information criterion gain per site is 0.25 and 0.42, when compared with WAG and JTT, respectively; 2) LG is significantly better than WAG for 38 alignments (among 59), and significantly worse with 2 alignments only; and 3) tree topologies inferred with LG, WAG, and JTT frequently differ, indicating that using LG impacts not only the likelihood value but also the output tree. Results with the test alignments from Pfam are analogous. LG and a PHYML implementation can be downloaded from http://atgc.lirmm.fr/LG.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available