4.3 Article

Wnt signaling is sufficient to perturb oligodendrocyte maturation

Journal

MOLECULAR AND CELLULAR NEUROSCIENCE
Volume 42, Issue 3, Pages 255-265

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.mcn.2009.07.010

Keywords

-

Categories

Funding

  1. Nat'l Multiple Sclerosis Society [RG 4105-A7]

Ask authors/readers for more resources

The development of oligodendrocytes, the myelinating cells of the central nervous system, is temporally and spatially controlled by local signaling factors acting as inducers or inhibitors. Dorsal spinal cord tissue has been shown to contain inhibitors of oligodendrogliogenesis, although their identity is not completely known. We have studied the actions of one family of dorsal signaling molecules, the Wnts, on oligodendrocyte development. Using tissue culture models, we have shown that canonical Wnt activity through beta-catenin activation inhibits oligodendrocyte maturation, independently of precursor proliferation, cell death, or diversion to an alternate cell fate. Mice in which Wnt/beta-catenin signaling was constitutively activated in cells of the oligodendrocyte lineage had equal numbers of oligodendrocyte precursors relative to control littermates, but delayed appearance of mature oligodendrocytes, myelin protein, and myelinated axons during development, although these differences largely disappeared by adulthood. These results indicate that activating the Wnt/beta-catenin pathway delays the development of myelinating oligodendrocytes. (C) 2009 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available