4.5 Review

Hormone and growth factor signaling in endometrial renewal: Role of stem/progenitor cells

Journal

MOLECULAR AND CELLULAR ENDOCRINOLOGY
Volume 288, Issue 1-2, Pages 22-29

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.mce.2008.02.026

Keywords

endometrium; adult stem cells; human; mouse; estrogen; growth factors

Ask authors/readers for more resources

The human endometrium is a dynamic remodeling tissue undergoing more than 400 cycles of regeneration, differentiation and shedding during a woman's reproductive years. The co-ordinated and sequential actions of estrogen and progesterone direct these major remodeling events preparing a receptive endometrium for blastocyst implantation on a monthly basis. Adult stem/progenitor cells are likely responsible for endometrial regeneration. Functional approaches have been used to identify candidate endometrial stem/progenitor cells, as there are no specific stem cell markers. Rare populations of human endometrial epithelial and stromal colony-forming cells/units (CFU) and side population (SP) cells have been identified. Several growth factors are required for CFU activity: epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha) and platelet-derived growth factor BB (PDGF-BB) for both epithelial and stromal CFU, and basic fibroblast growth factor (bFGF) for stromal, but not epithelial CFU. A sub-population of human endometrial stromal cells with mesenchymal stem cell properties of CFU activity and multilineage (fat, muscle, cartilage and bone) differentiation have been isolated by their co-expression of CD146 and PDGF-receptor beta. Candidate epithelial and stromal stem/progenitor cells have been identified in mouse endometrium as rare label retaining cells (LRCs) in the luminal epithelium and as perivascutar cells at the endometrial-myometrial junction, respectively. While epithelial and most stromal LRC do not express estrogen receptor alpha (Esr1), they rapidly proliferate on estrogen stimulation, most likely mediated by neighbouring Esr1-expressing niche cells. It is likely that these newly identified endometrial stem/progenitor cells may play key roles in the development of gynecological diseases associated with abnormal endometrial proliferation such as endometriosis and endometrial cancer. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available