4.5 Article

The Set2-RPB1 Interaction Domain of Human RECQ5 Is Important for Transcription-Associated Genome Stability

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 31, Issue 10, Pages 2090-2099

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.01137-10

Keywords

-

Funding

  1. NIH, Yale Cancer Center, Breast Cancer Alliance
  2. Elsa U. Pardee Foundation
  3. Leslie Warner postdoctoral fellowship

Ask authors/readers for more resources

The conserved RECQ5 DNA helicase is a tumor suppressor in mammalian cells. Defects in RECQ5 lead to the accumulation of spontaneous DNA double-stranded breaks (DSBs) during replication, despite the fact that these cells are proficient in DSB repair by homologous recombination (HR). The reason for this is unknown. Here, we demonstrate that these DSBs are linked to RNA polymerase II (RNAPII)-dependent transcription. In human RECQ5-depleted cells, active RNAPII accumulates on chromatin, and DNA breaks are associated with an RNAPII-dependent transcribed locus. Hence, transcription inhibition eliminates both active RNAPII and spontaneous DSB formation. In addition, the regulatory effect of RECQ5 on transcription and its interaction with RNAPII are enhanced in S-phase cells, supporting a role for RECQ5 in preventing transcription-associated DSBs during replication. Finally, we show that the SET2-RPB1 interaction (SRI) domain of human RECQ5 is important for suppressing spontaneous DSBs and the p53-dependent transcription stress response caused by the stalling of active RNAPII on DNA. Thus, our studies provide novel insights into a mechanism by which RECQ5 regulates the transcription machinery via its dynamic interaction with RNAPII, thereby preventing genome instability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available