4.5 Article

Neuropilin-1 Signaling through p130Cas Tyrosine Phosphorylation Is Essential for Growth Factor-Dependent Migration of Glioma and Endothelial Cells

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 31, Issue 6, Pages 1174-1185

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.00903-10

Keywords

-

Funding

  1. British Heart Foundation [FS/06/019, RG/06/003]
  2. Ark Therapeutics Limited
  3. British Heart Foundation [RG/06/003/21131, PG/08/088/25873] Funding Source: researchfish

Ask authors/readers for more resources

Neuropilin-1 (NRP1) is a receptor for vascular endothelial growth factor (VEGF) and plays an important role in mediating cell motility. However, the NRP1 signaling pathways important for cell motility are poorly understood. Here we report that p130(Cas) tyrosine phosphorylation is stimulated by hepatocyte growth factor and platelet-derived growth factor in U87MG glioma cells and VEGF in endothelial cells and is dependent on NRP1 via its intracellular domain. In endothelial cells, NRP1 silencing reduced, but did not prevent, VEGF receptor 2 (VEGFR2) phosphorylation, while expression of a mutant form of NRP1 lacking the intracellular domain (NRP1 Delta C) did not affect receptor phosphorylation in U87MG cells or human umbilical vein endothelial cells (HUVECs). In HUVECs, NRP1 was also required for VEGF-induced phosphorylation of proline-rich tyrosine kinase 2, which was necessary for p130(Cas) phosphorylation. Importantly, knockdown of NRP1 or p130(Cas) or expression of either NRP1 Delta C or a non-tyrosine-phosphorylatable substrate domain mutant protein (p130(Cas15F)) was sufficient to inhibit growth factor-mediated migration of glioma and endothelial cells. These data demonstrate for the first time the importance of the NRP1 intracellular domain in mediating a specific signaling pathway downstream of several receptor tyrosine kinases and identify a critical role for a novel NRP1-p130(Cas) pathway in the regulation of chemotaxis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available