4.5 Article

Acute Overexpression of Myc in Intestinal Epithelium Recapitulates Some but Not All the Changes Elicited by Wnt/β-Catenin Pathway Activation

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 29, Issue 19, Pages 5306-5315

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.01745-08

Keywords

-

Funding

  1. NIH [RO1 CA98018]
  2. Daiichi Corp.
  3. Stewart Trust Cancer Research Award
  4. Sandler Family Foundation
  5. Damon Runyon Cancer Research Foundation

Ask authors/readers for more resources

The Myc transcription factor is a potent inducer of proliferation and is required for Wnt/beta-catenin signaling in intestinal epithelium. Since deregulation of the Wnt/beta-catenin pathway is a prerequisite for nonhereditary intestinal tumorigenesis, we asked whether activation of Myc recapitulates the tumorigenic changes that are driven by constitutive Wnt/beta-catenin pathway signaling following adenomatous polyposis coli (APC) inactivation. Using mice in which expression of MycER(TAM), a reversibly switchable form of Myc, is expressed transgenically in intestinal epithelium, we define the acute changes that follow Myc activation as well as subsequent deactivation. Myc activation reversibly recapitulates many, but not all, aspects of APC inactivation, including increased proliferation and apoptosis and loss of goblet cells. However, whereas APC inactivation induces redistribution of Paneth cells, direct Myc activation triggers their rapid attrition. Moreover, direct Myc activation engages the ARF/p53/p21(cip1) tumor suppressor pathway, whereas deregulation of Wnt/beta-catenin signaling does not. These observations illustrate key differences in oncogenic impact in intestinal epithelium of direct Myc activation and indirect Myc activation via the Wnt/beta-catenin pathway. Furthermore, the in situ dedifferentiation of mature goblet cells that Myc induces indicates a novel cross talk between the Wnt/beta-catenin and Notch signaling pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available