4.5 Article

Overlapping Functions of Nuclear Envelope Proteins NET25 (Lem2) and Emerin in Regulation of Extracellular Signal-Regulated Kinase Signaling in Myoblast Differentiation

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 29, Issue 21, Pages 5718-5728

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.00270-09

Keywords

-

Funding

  1. NIH [RO1 GM28521, F32 GM080045]

Ask authors/readers for more resources

Mutations in certain nuclear envelope (NE) proteins cause muscular dystrophies and other disorders, but the disease mechanisms remain unclear. The nuclear envelope transmembrane protein NET25 (Lem2) is a truncated paralog of MAN1, an NE component linked to bone disorders. NET25 and MAN1 share an similar to 40-residue LEM homology domain with emerin, the protein mutated in X-linked Emery-Dreifuss muscular dystrophy. However, roles for NET25 and MAN1 in myogenesis have not yet been described. Using RNA interference in C2C12 myoblasts, we show for the first time that both NET25 and MAN1 are required for myogenic differentiation. NET25 depletion causes hyperactivation of extracellular signal-regulated kinase 1/2 at the onset of differentiation, and pharmacological inhibition of this transient overactivation rescues myogenesis. In contrast, pharmacological inhibition of both mitogen-activated protein kinase and transforming growth factor beta signaling is required to rescue differentiation after MAN1 depletion. Ectopic expression of silencing-resistant NET25 rescues myogenesis after depletion of emerin but not after MAN1 silencing. Thus, NET25 and emerin have at least partially overlapping functions during myogenic differentiation, which are distinct from those of MAN1. Our work supports the hypothesis that deregulation of cell signaling contributes to NE-linked disorders and suggests that mutations in NET25 and MAN1 may cause muscle diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available