4.5 Article

Phosphorylation by Cyclin C/Cyclin-Dependent Kinase 2 following Mitogenic Stimulation of Murine Fibroblasts Inhibits Transcriptional Activity of LSF during G1 Progression

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 29, Issue 9, Pages 2335-2345

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.00687-08

Keywords

-

Funding

  1. National Cancer Institute [CA-081157, CA-18689]

Ask authors/readers for more resources

sTranscription factor LSF is required for progression from quiescence through the cell cycle, regulating thymidylate synthase (Tyms) expression at the G(1)/S boundary. Given the constant level of LSF protein from G(0) through S, we investigated whether LSF is regulated by phosphorylation in G(1). In vitro, LSF is phosphorylated by cyclin E/cyclin-dependent kinase 2 (CDK2), cyclin C/CDK2, and cyclin C/CDK3, predominantly on S309. Phosphorylation of LSF on S309 is maximal 1 to 2 h after mitogenic stimulation of quiescent mouse fibroblasts. This phosphorylation is mediated by cyclin C-dependent kinases, as shown by coimmunoprecipitation of LSF and cyclin C in early G(1) and by abrogation of LSF S309 phosphorylation upon suppression of cyclin C with short interfering RNA. Although mouse fibroblasts lack functional CDK3 (the partner of cyclin C in early G(1) in human cells), CDK2 compensates for this absence. By transient transfection assays, phosphorylation at S309, mediated by cyclin C overexpression, inhibits LSF transactivation. Moreover, overexpression of cyclin C and CDK3 inhibits induction of endogenous Tyms expression at the G(1)/S transition. These results identify LSF as only the second known target (in addition to pRb) of cyclin C/CDK activity during progression from quiescence to early G(1). Unexpectedly, this phosphorylation prevents induction of LSF target genes until late G(1).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available