4.5 Article

Dynamic Compartmentalization of Base Excision Repair Proteins in Response to Nuclear and Mitochondrial Oxidative Stress

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 29, Issue 3, Pages 794-807

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.01357-08

Keywords

-

Funding

  1. NIH [ES 011163, GM 066355, GM0 58728, GM008490]

Ask authors/readers for more resources

DNAs harbored in both nuclei and mitochondria of eukaryotic cells are subject to continuous oxidative damage resulting from normal metabolic activities or environmental insults. Oxidative DNA damage is primarily reversed by the base excision repair (BER) pathway, initiated by N-glycosylase apurinic/apyrimidinic (AP) lyase proteins. To execute an appropriate repair response, BER components must be distributed to accommodate levels of genotoxic stress that may vary considerably between nuclei and mitochondria, depending on the growth state and stress environment of the cell. Numerous examples exist where cells respond to signals, resulting in relocalization of proteins involved in key biological transactions. To address whether such dynamic localization contributes to efficient organelle-specific DNA repair, we determined the intracellular localization of the Saccharomyces cerevisiae N-glycosylase/AP lyases, Ntg1 and Ntg2, in response to nuclear and mitochondrial oxidative stress. Fluorescence microscopy revealed that Ntg1 is differentially localized to nuclei and mitochondria, likely in response to the oxidative DNA damage status of the organelle. Sumoylation is associated with targeting of Ntg1 to nuclei containing oxidative DNA damage. These studies demonstrate that trafficking of DNA repair proteins to organelles containing high levels of oxidative DNA damage may be a central point for regulating BER in response to oxidative stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available