4.6 Article

miR-143 suppresses osteogenic differentiation by targeting Osterix

Journal

MOLECULAR AND CELLULAR BIOCHEMISTRY
Volume 390, Issue 1-2, Pages 69-74

Publisher

SPRINGER
DOI: 10.1007/s11010-013-1957-3

Keywords

miR-143; Osteogenesis; Differentiation; Osterix

Categories

Ask authors/readers for more resources

Osterix (Osx) is an essential transcription factor for osteoblast differentiation and bone formation. However, the knowledge of the regulation of Osx expression is poor. MicroRNAs (miRNAs), a class of small non-coding RNAs, play critical roles in numerous biological processes, including the proliferation, differentiation, and survival of cells and organisms. Herein, we aimed to explore the effect of miR-143 on Osx expression and osteogenic differentiation. miR-143, which was suppressor of the osteogenic differentiation of MC3T3-E1 cells, had decreased levels of expression during osteogenic differentiation. Moreover, Osx was identified to be a direct target of miR-143. Inhibition of Osx performed similar effect with miR-143 on osteogenic differentiation, while overexpression of Osx could partially reverse the suppressive effect of miR-143. Collectively, these data indicate that miR-143 is a novel regulator of Osx, and it might play an essential role in the regulation of osteogenic differentiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available