4.6 Article

The inhibitory effect of angiotensin II on BKCa channels in podocytes via oxidative stress

Journal

MOLECULAR AND CELLULAR BIOCHEMISTRY
Volume 398, Issue 1-2, Pages 217-222

Publisher

SPRINGER
DOI: 10.1007/s11010-014-2221-1

Keywords

Angiotensin II; Podocytes; BKCa channel; Patch-clamp technique; ROS

Categories

Funding

  1. National Natural Science Foundation of China [31271074]
  2. National Basic Research Program of China [2011CB944003]

Ask authors/readers for more resources

Angiotensin II (Ang II) is an important active substance of the renin-angiotensin system (RAS). The present study has confirmed that abnormalities of Ang II may be related with cerebrovascular diseases, endocrine diseases, cardiovascular diseases, liver diseases, such as: cerebral hypoxia, diabetes, obesity, atrial fibrillation, and liver cirrhosis. However, understanding effects of Ang II on podocytes is not enough. This study was to investigate the effects of oxidative stress on the large conductance, Ca2+-activated K+ channels (BKCa). Results from the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay showed that Ang II induced podocyte death in a concentration-dependent manner. The measurement of superoxide dismutase (SOD) generation demonstrated that Ang II decreased the total SOD of cellular levels. Meaningfully, pretreatment of a type of ROS scavenger formulations named N-(mercaptopropionyl)-glycine (N-MPG) could inhibit podocyte apoptosis induced by Ang II. Meanwhile, patch-clamp technique was used in this study to detect the effects of Ang II on currents of BKCa channel in podocytes. The results indicated that Ang II inhibited the current amplitude of BKCa channel and decreased the slope of I-V curve. Ang II also made the activation curves of BKCa channel shift to the left. These results may provide a theoretical basis for potential treatment of chronic glomerular disease in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available