4.6 Article

Modification of oxidative stress on gene expression profiling in the rat infarcted heart

Journal

MOLECULAR AND CELLULAR BIOCHEMISTRY
Volume 379, Issue 1-2, Pages 243-253

Publisher

SPRINGER
DOI: 10.1007/s11010-013-1646-2

Keywords

Myocardial infarction; Cardiac repair/remodeling; Oxidative stress; Gene expression

Categories

Funding

  1. NIH Heart, Blood, and Lung Institute [RO1-HL096503]

Ask authors/readers for more resources

Cardiac oxidative stress is developed following myocardial infarction (MI) particularly in the first week of MI. The influence of reactive oxygen species (ROS) on gene expression profiling and molecular pathways in the infarcted myocardium remains uncertain and is explored in the present study. Rats with MI were treated with or without antioxidants for 1 week. Normal rats served as controls. Cardiac oxidative stress and gene profiling were investigated. Compared to normal hearts, malondialdehyde, a marker of oxidative stress, was significantly increased in the infarcted myocardium, which was significantly suppressed by antioxidants. Microarray assay showed that over a thousand genes were differentially expressed in the infarcted myocardium. Antioxidants significantly altered the expression of 159 genes compared to untreated MI rats. Ingenuity pathway analysis indicated that multiple pathway networks were affected by antioxidants, including those related to cell movement, growth/development, death, and inflammatory/fibrotic responses. IPA further identified that these changes were primarily related to NF kappa B, p38 MAPK, and ER kappa 1/2 pathways. Hub genes were identified in the associated gene networks. This study reveals the gene networks associated with cardiac oxidative stress postMI. These observations indicate that ROS regulate various molecular and cellular actions related to cardiac repair/remodeling through multiple gene networks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available