4.6 Article

Molecular metabolic fingerprinting approach to investigate the effects of borneol on metabolic alterations in the liver of nitric oxide deficient hypertensive rats

Journal

MOLECULAR AND CELLULAR BIOCHEMISTRY
Volume 362, Issue 1-2, Pages 203-209

Publisher

SPRINGER
DOI: 10.1007/s11010-011-1143-4

Keywords

Hypertension; FTIR; Hepatic metabolism; Borneol

Categories

Ask authors/readers for more resources

Hypertension is one of the major risk factor that underlie a wide range of cardiovascular irregularities which causes functional and metabolic alterations in vascular system and major organs. Nitric oxide is the central regulator of the vascular system and its deficiency leads to increased blood pressure and metabolic alterations in liver. Fourier transform infrared spectroscopy (FTIR) is a vibrational spectroscopic technique that uses infrared radiation to vibrate molecular bonds with in the sample that absorbs it and different samples contain diverse configurations of molecular bonds. Both wavenumber and area of the vibrational spectra can be used to explore the qualitative and quantitative constituent of macromolecules. In this study, we intended to evaluate the protective role of borneol, a natural terpene on liver metabolism in a nitric oxide deficient model of hypertension through interpretation of FTIR spectral information. Results demonstrate that FTIR can successfully indicate the molecular changes that occur in all groups. The over all findings demonstrate that in nitric oxide deficient animal model of hypertension, the liver metabolic program is altered through increasing the structural modification in proteins and triglycerides, and quantitative alteration in proteins, lipids, and glycogen. All the above mentioned modifications were protected by borneol in liver and showed its ability to exert a novel defensive action on hepatic metabolism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available