4.1 Article

Stage independent chloroquine resistance and chloroquine toxicity revealed via spinning disk confocal microscopy

Journal

MOLECULAR AND BIOCHEMICAL PARASITOLOGY
Volume 159, Issue 1, Pages 7-23

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.molbiopara.2007.12.014

Keywords

hemozoin; merozoite production; delayed death

Funding

  1. NIAID NIH HHS [R01 AI045957, R01 AI045957-07, AI045957, R01 AI052312, R01 AI045957-06, AI052312, R01 AI056312-03, R01 AI056312-04, R01 AI056312] Funding Source: Medline

Ask authors/readers for more resources

We previously customized a Nipkow spinning disk confocal microscope (SDCM) to acquire 4D data for live, intraerythrocytic malarial parasites [Gligorijevic B, McAllister R, Urbach JS, Roepe, PD. Spinning disk confocal microscopy of live, intraerythrocytic malarial parasites. 1. Quantification of hemozoin development for drug sensitive versus resistant malaria. Biochemistry 2006;45:12400-10]. We reported that chloroquine (CQ) treatment did not appear to affect progress through the cell cycle, and suggested that toxicity may be manifested post-schizogony. We now use SDCM, synchronized cell culture and continuous vs. bolus drug dosing to investigate stage specific CQ effects in detail. We develop a novel, extremely rapid method for counting schizont nuclei in 3D. We then quantify schizont nuclei and hemozoin (Hz) production for live parasite cultures pulsed with CQ at different stages in the cell cycle and find that bolus treatment of rings affects the multiplicity of nuclear division. We quantify parasitemia and merozoite development in subsequent cycles following bolus CQ exposure and find that a portion of CQ toxicity is manifested post-schizogony as delayed death. Using these methods and others we compare CQ sensitive (CQS) vs. resistant (CQR) strains as well as transfectants that are CQR via introduction of mutant PfCRT. Surprisingly, we find that PfCRT confers resistance to CQ administered at the very early ring stage of development, wherein a digestive vacuole is not yet formed, as well as at the schizont stage, wherein Hz production is thought to plateau. Taken together, these data force a rethinking of CQ pharmacology and the mechanism of CQR. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available