4.7 Article

Post-translational Modifications Differentially Affect IgG1 Conformation and Receptor Binding

Journal

MOLECULAR & CELLULAR PROTEOMICS
Volume 9, Issue 8, Pages 1716-1728

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/mcp.M900540-MCP200

Keywords

-

Funding

  1. National Institutes of Health [GM-070590, GM-086507]
  2. Waters Corp.

Ask authors/readers for more resources

Post-translational modifications (PTMs) can have profound effects on protein structure and protein dynamics and thereby can influence protein function. To understand and connect PTM-induced functional differences with any resulting conformational changes, the conformational changes must be detected and localized to specific parts of the protein. We illustrate these principles here with a study of the functional and conformational changes that accompany modifications to a monoclonal immunoglobulin gamma 1 (IgG1) antibody. IgG1s are large and heterogeneous proteins capable of incorporating a multiplicity of PTMs both in vivo and in vitro. For many IgG1s, these PTMs can play a critical role in affecting conformation, biological function, and the ability of the antibody to initiate a potential adverse biological response. We investigated the impact of differential galactosylation, methionine oxidation, and fucosylation on solution conformation using hydrogen/deuterium exchange mass spectrometry and probed the effects of IgG1 binding to the Fc gamma RIIIa receptor. The results showed that methionine oxidation and galactosylation both impact IgG1 conformation, whereas fucosylation appears to have little or no impact to the conformation. Fc gamma RIIIa binding was strongly influenced by both the glycan structure/composition (namely galactose and fucose) and conformational changes that were induced by some of the modifications. Molecular & Cellular Proteomics 9:1716-1728, 2010.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available