4.7 Article

S100A11 Mediates Hypoxia-induced Mitogenic Factor (HIMF)-induced Smooth Muscle Cell Migration, Vesicular Exocytosis, and Nuclear Activation

Journal

MOLECULAR & CELLULAR PROTEOMICS
Volume 10, Issue 3, Pages -

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/mcp.M110.000901

Keywords

-

Funding

  1. National Institutes of Health Specialized Centers of Clinically Oriented Research [P50084946]

Ask authors/readers for more resources

Hypoxia-induced mitogenic factor (HIMF) is a newly discovered protein that is up-regulated in murine models of pulmonary arterial hypertension and asthma. Our previous study shows that HIMF is a potent mitogenic, angiogenic, and vasoconstrictive chemokine associated with pulmonary arterial hypertension. Two-dimensional gel electrophoresis was used to investigate downstream molecules in HIMF-induced cell signaling, demonstrating that S100A11, an EF-hand calcium-binding protein, was exclusively altered and was decreased (2.7 +/- 0.2-fold, p < 0.05) in pulmonary artery smooth muscle cells (SMCs) treated with HIMF for 5 min compared with untreated cells (n = 4). Immunofluorescence showed that in control cells S100A11 is a cytosolic protein, which then aggregates and translocates both to the plasma membrane with subsequent exocytosis and to the nucleus upon HIMF stimulation. Annexin A2, a known S100A11 binding partner, also colocalized with S100A11 during HIMF-induced membrane trafficking. To investigate the intracellular function of S100A11, siRNA was used to knock down S100A11 expression in SMCs. The S100A11 knockdown significantly reduced HIMF-induced SMC migration but did not affect the SMC mitogenic action of HIMF. Our data show that S100A11 mediates HIMF-induced smooth muscle cell migration, vesicular exocytosis, and nuclear activation. Molecular & Cellular Proteomics 10: 10.1074/mcp.M110.000901, 1-7, 2011.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available