4.7 Article

Proteomics-based Identification of Novel Factor Inhibiting Hypoxia-inducible Factor (FIH) Substrates Indicates Widespread Asparaginyl Hydroxylation of Ankyrin Repeat Domain-containing Proteins

Journal

MOLECULAR & CELLULAR PROTEOMICS
Volume 8, Issue 3, Pages 535-546

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/mcp.M800340-MCP200

Keywords

-

Funding

  1. Wellcome Trust
  2. Cancer Research UK
  3. Medical Research Council

Ask authors/readers for more resources

Post-translational hydroxylation has been considered an unusual modification on intracellular proteins. However, following the recognition that oxygen-sensitive prolyl and asparaginyl hydroxylation are central to the regulation of the transcription factor hypoxia-inducible factor (HIF), interest has centered on the possibility that these enzymes may have other substrates in the proteome. In support of this certain ankyrin repeat domain (ARD)-containing proteins, including members of the I kappa B and Notch families, have been identified as alternative substrates of the HIF asparaginyl hydroxylase factor inhibiting HIF (FIH). Although these findings imply a potentially broad range of substrates for FIH, the precise extent of this range has been difficult to determine because of the difficulty of capturing transient enzyme-substrate interactions. Here we describe the use of pharmacological substrate trapping together with stable isotope labeling by amino acids in cell culture (SILAC) technology to stabilize and identify potential FIH-substrate interactions by mass spectrometry. To pursue these potential FIH substrates we used conventional data-directed tandem MS together with alternating low/high collision energy tandem MS to assign and quantitate hydroxylation at target asparaginyl residues. Overall the work has defined 13 new FIH-dependent hydroxylation sites with a degenerate consensus corresponding to that of the ankyrin repeat and a range of ARD-containing proteins as actual and potential substrates for FIH. Several ARD-containing proteins were multiply hydroxylated, and detailed studies of one, Tankyrase-2, revealed eight sites that were differentially sensitive to FIH-catalyzed hydroxylation. These findings indicate that asparaginyl hydroxylation is likely to be widespread among the similar to 300 ARD-containing species in the human proteome. Molecular & Cellular Proteomics 8:535-546, 2009.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available