4.5 Article Proceedings Paper

THE TRANSIENT DEFORMATION OF RED BLOOD CELLS IN SHEAR FLOW

Journal

MODERN PHYSICS LETTERS B
Volume 23, Issue 3, Pages 545-548

Publisher

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S0217984909018862

Keywords

Immersed boundary method; lattice Boltzmann method; cell deformation

Ask authors/readers for more resources

The transient deformation of red blood cells (RBCs) in a shear flow is studied by a three-dimensional numerical model proposed by the present authors. The RBCs are approximated by ghost cells consisting of Newtonian liquid drops enclosed by Skalak membranes. The RBCs have an initially biconcave discoid resting shape, and the internal liquid is assumed to be the same to the fluid outside. The simulation is based on a hybrid method, in which the immersed boundary concept is introduced into the framework of the lattice Boltzmann method, and a finite element model is incorporated to obtain the forces acting on the nodes of the cell membrane which is discretized into flat triangular elements. The dynamic motion of RBCs is investigated in simple shear flow under a broad range of shear rates. At large shear rates, the present results show that the cells carry out a swinging motion, in which periodic inclination-oscillation and shape deformation superimpose on the membrane tank treading motion. With the shear rate decreasing, the swinging amplitude of the cell increases, and finally triggers a transition to tumbling motion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available