4.4 Article

Computational study of ignition behavior and hotspot dynamics of a potential class of aluminized explosives

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1361-651X/aae402

Keywords

energetic material; PBX; HMX; metal-matrix explosives; ignition; impact

Funding

  1. Defense Threat Reduction Agency (DTRA)
  2. Air Force Office of Scientific Research

Ask authors/readers for more resources

The ignition behavior and hotspot dynamics of a potential class of aluminized energetic materials are studied computationally. The materials consist of HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) grains embedded in an aluminum matrix and, henceforth referred to as metal-matrix explosives (MMXs). For the analysis, two different MMXs, the soft MMX with a matrix of 1100 Al alloy and the hard MMX with a matrix of 7075 T651 Al alloy are considered. The thermo-mechanical response of the MMXs are computationally analyzed by subjecting them to monotonic impact loading using a Lagrangian cohesive finite element framework, with their ignition behavior analyzed through characterization of hotspots. For comparison, a polymerbonded explosive (PBX) consisting of HMX and Estane is also analyzed under the same conditions. The results show that the MMXs have significantly lower propensity for ignition and higher structural integrity than the PBX over the loading velocity range of 200-500 m s(-1).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available