4.4 Article

Micromechanics prediction of the effective elastic moduli of graphene sheet-reinforced polymer nanocomposites

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0965-0393/18/4/045005

Keywords

-

Funding

  1. National Natural Science Foundation of China [10732050, 10842003, 10525210]
  2. 973 Project [2010CB631005]

Ask authors/readers for more resources

We investigate the stiffening effect of graphene sheets dispersed in polymer nanocomposites using the Mori-Tanaka micromechanics method. The effective elastic moduli of graphene sheet-reinforced composites are first predicted by assuming that all the graphene sheets are either aligned or randomly oriented in the polymer matrix while maintaining their platelet-like shape. It is shown that a very low content of graphene sheets can considerably enhance the effective stiffness of the composite. The superiority of graphene sheets as a kind of reinforcement is further verified by a comparison with carbon nanotubes, another promising nanofiller in polymer composites. In addition, we analyze several critical physical mechanisms that may affect the reinforcing effects, including the agglomeration, stacking-up and rolling-up of graphene sheets. The results reveal the extent to which these factors will negatively influence the elastic moduli of graphene sheet-reinforced nanocomposites. This theoretical study may help to understand the relevant experimental results and facilitate the mechanical characterization and optimal synthesis of these kinds of novel and highly promising nanocomposites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available