4.5 Article

A Resilient and Scalable Flocking Scheme in Autonomous Vehicular Networks

Journal

MOBILE NETWORKS & APPLICATIONS
Volume 15, Issue 1, Pages 126-136

Publisher

SPRINGER
DOI: 10.1007/s11036-009-0168-3

Keywords

autonomous vehicular networks; VANET; collision avoidance; flocking; mobile unmanned vehicles

Funding

  1. US National Science Foundation [CCF-0545667]

Ask authors/readers for more resources

Vehicular Ad hoc NETworks (VANET) is emerging as a highly promising technology, which aims to provide road safety, environment protection and personal-oriented services. The vehicle ad hoc wireless communications form an indispensable part of truly ubiquitous communications networking. VANET is formed by spontaneously moving autonomous vehicles with the self-organization and self-management capability. In this paper, we focus on the decentralized coordination of multiple unmanned vehicles such that they can freely move and adaptively cooperate in a complex environment. During this procedure, flocking is one of the key operations and requirements. Here, flocking refers to the formation and maintenance of a desired pattern by a group of mobile vehicles without collision during movement. We propose a resilient and scalable flocking scheme for a group of vehicles, which follows the leader-followers moving pattern. In the absence of obstacles, a collision avoidance algorithm is presented to maintain a desired distance among vehicles. This will ensure information completeness and is significant in certain mission critical situations without collision between a unmanned vehicle and its neighboring vehicles. In the presence of obstacles in an environment, this algorithm is able to avoid collision between a vehicle and its neighbor (either a neighboring vehicle or a neighboring obstacle). Theoretical proof has been presented to demonstrate the effectiveness and correctness of the algorithm to guarantee collision-free. In addition, with increasing number of vehicles, the performance of the proposed flocking scheme performs without increasing the processing overhead, which demonstrates the desirable scalability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available