4.3 Article Proceedings Paper

Oxygen isotope sector zoning in natural hydrothermal quartz

Journal

MINERALOGICAL MAGAZINE
Volume 73, Issue 4, Pages 615-632

Publisher

MINERALOGICAL SOC
DOI: 10.1180/minmag.2009.073.4.615

Keywords

hydrothermal quartz; oxygen isotope; sector zoning; SIMS; laser-fluorination; Alpine veins

Categories

Funding

  1. NERC [IMF010001] Funding Source: UKRI
  2. Natural Environment Research Council [IMF010001] Funding Source: researchfish

Ask authors/readers for more resources

Oxygen isotope measurements using SIMS and laser-fluorination methods confirm the presence of concentric and sector zoning in low-temperature (200 degrees C to < 400 degrees C) hydrothermal quartz from Alpine veins. While concentric zoning is most readily explained by changes in the chemical composition of the fluid or temperature of crystallization, the reasons for sector zoning are more difficult to explain. Relative enrichment in (18)O for crystallographically different sectors of quartz corresponds to m > r > z. Sector zoning is, however, largely limited to the exterior zones of crystals and/or to crystals with large Al (> 1000 ppm) and trace element contents, probably formed at temperatures < 250 degrees C. Differences in delta(18)O between the prismatic (m) relative to the rhombohedral (r and z) growth sectors of up to 2 parts per thousand can be explained by a combination of a face-related crystallographic and/or a growth rate control. In contrast, isotopic sector zoning of up to about 1.5 parts per thousand amongst the different rhombohedral faces increases in parallel with the trace element content and is likely to represent disequilibrium growth. This is indicated by non-systematic, up to 2 parts per thousand, differences within single growth zones and the irregular, larger or smaller, delta(18)O values (of several permil) of the exterior compared to the inner zones of the same crystals. Disequilibrium growth may be related to the large trace element content incorporated into the growing quartz at lower temperatures (< 250 degrees C) and/or be related to fluid-vapour separation, allowing crystal growth from both a vapour as well as a liquid phase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available