4.4 Article

Gene expression profiles of ATP-binding cassette transporter A and C subfamilies in mouse retinal vascular endothelial cells

Journal

MICROVASCULAR RESEARCH
Volume 75, Issue 1, Pages 68-72

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.mvr.2007.05.002

Keywords

ATP-binding cassette transporter; transcription level; retinal vascular endothelial cells; inner blood-retinal barrier; magnetic; expression; isolation; mouse

Ask authors/readers for more resources

The purpose of this study was to quantify gene expression levels of the ATP-binding cassette (ABC) transporter A and C subfamilies ABCA1-A9, and ABCC1-6/Mrp1-6, C10/Mrp7 in mouse retinal vascular endothelial cells (RVEC) using a combination of a magnetic isolation method for mouse RVEC and real-time quantitative PCR analysis. The transcript level of endothelial cell markers, such as CD31, Tie-2, claudin-5, occludin, ABCB1a/mdr1a, and ABCG2, were more than 20-fold higher than those in the non-RVEC fraction, suggesting that RVEC in the RVEC fraction are concentrated at least 20-fold compared with those of the non-RVEC fraction. In the ABCA1 to A9 families, the transcript level of ABCA3 and A9 in the RVEC fraction was 1.2- and 32-fold higher than that in the non-RVEC fraction. Although ABCA3 was expressed in both the RVEC and non-RVEC fractions, A9 is predominantly expressed in the RVEC fraction. In the ABCC1 to C6 and C10 families, the transcript level of ABCC3, C4, and C6 in the RVEC fraction was 27-, 251-, and 242-fold higher, respectively, than that in the non-RVEC fraction, suggesting that ABCC3, C4, and C6 are predominantly expressed in the RVEC. In conclusion, ABCA3, ABCA9, ABCC3, ABCC4, and ABCC6 mRNAs are predominantly expressed at the inner blood-retina barrier (inner BRB) and appear to play a major role in the efflux transport of their substrates at the inner BRB. (c) 2007 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available