4.4 Article

Modeling of micro/nano particle separation in microchannels with field-flow fractionation

The cyclical electrical field-flow fractionation (CyElFFF) is a very promising separation technique for particles and biological molecules such as proteins, nucleic acids, viruses, bacteria, yeast cells, mammalian cells. But a clear understanding of the mechanism and performance prediction of this system under different operating parameters is far from completed. This research focuses on a computational investigation of particle behavior in a CyElFFF system by taking into account both electrokinetic effects and particle dynamics. The model was validated with both theory and experimental results. The effects of key parameters such as applied electric field strength and frequency, solution fluid flow rate, particle size, particle shape on separation process are addressed in a systematic way. The developed model can also be utilized in studying the behavior of spherical or non-spherical particles (such as nanowire, nanorod, and nanofiber) in other microfluidic systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available