4.5 Article

A Novel Algorithm for the Determination of Bacterial Cell Volumes That is Unbiased by Cell Morphology

Journal

MICROSCOPY AND MICROANALYSIS
Volume 17, Issue 5, Pages 799-809

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S1431927611012104

Keywords

cell volume; high-throughput microscopy; model-based object-oriented image analysis; microbial ecology; screening

Ask authors/readers for more resources

The determination of cell volumes and biomass offers a means of comparing the standing stocks of auto-and heterotrophic microbes of vastly different sizes for applications including the assessment of the flux of organic carbon within aquatic ecosystems. Conclusions about the importance of particular genotypes within microbial communities (e. g., of filamentous bacteria) may strongly depend on whether their contribution to total abundance or to biomass is regarded. Fluorescence microscopy and image analysis are suitable tools for determining bacterial biomass that moreover hold the potential to replace labor-intensive manual measurements by fully automated approaches. However, the current approaches to calculate bacterial cell volumes from digital images are intrinsically biased by the models that are used to approximate the morphology of the cells. Therefore, we developed a generic contour based algorithm to reconstruct the volumes of prokaryotic cells from two-dimensional representations (i.e., microscopic images) irrespective of their shape. Geometric models of commonly encountered bacterial morphotypes were used to verify the algorithm and to compare its performance with previously described approaches. The algorithm is embedded in a freely available computer program that is able to process both raw (8-bit grayscale) and thresholded (binary) images in a fully automated manner.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available