4.7 Article

Single and multicomponent adsorption of hexane isomers in the microporous ZIF-8

Journal

MICROPOROUS AND MESOPOROUS MATERIALS
Volume 194, Issue -, Pages 146-156

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.micromeso.2014.04.009

Keywords

Hexane isomers; MOF ZIF-8; Multicomponent sorption; Breakthrough curves

Funding

  1. Franco-Portuguese PAUILF program
  2. European Community's Seventh Framework Program [228862]

Ask authors/readers for more resources

Single, binary and ternary breakthrough experiments of hexane (C-6) isomers n-hexane (nHEX), 3-methylpentane (3MP), and 2,2-dimethylbutane (22DMB) were performed in the microporous zinc methyl-imidazolate metal-organic framework ZIF-8, covering the temperature range between 313 and 423 K and partial pressures up to 20 kPa. Adsorption equilibrium isotherms for nHEX were collected from single component breakthrough experiments who show that the sorption behavior of linear nHEX is totally different than the one observed for the branched isomers. Indeed, while nHEX is retained in the bed the branched paraffins spontaneously breakthrough leading to an efficient separation with a remarkable working capacity (25 wt%) for nHEX at 313 K and partial pressure 10 kPa. Langmuir isotherm is found to reasonably describe the adsorption equilibrium data of nHEX while the heat of sorption reaches 32.8 kJ/mol with Langmuir equilibrium affinity constants ranging from 1.73 to 0.0624 kPa(-1) between 313 and 423 K, respectively. The ternary experiments (nHEX/3MP/22DMB) show a complete separation between nHEX and the branched isomers together with an adsorbed amount of nHEX similar to the one found in single component experiments. In the binary experiments (3MP/22DMB) the separation and sorption capacity is negligible. A fixed bed adsorption dynamic model is used to demonstrate that the complete separation of nHEX from the branched paraffins is due to a spontaneous breakthrough of the branched paraffins due to its lower diffusivity values when compared with nHEX. (C) 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available