4.7 Article

Porosity and microstructure of plasma deposited TiO2 thin films

Journal

MICROPOROUS AND MESOPOROUS MATERIALS
Volume 118, Issue 1-3, Pages 314-324

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.micromeso.2008.09.002

Keywords

Titanium dioxide; Porosity; Microstructure; Thin film; Water isotherm

Funding

  1. Spanish Ministry of Science and Education [MAT 2007-65764, NAN200409317-C04-01]
  2. Junta de Andalucia [TEP2275]
  3. Domingo Martinez Foundation

Ask authors/readers for more resources

The microstructure of TiO2 thin films prepared by plasma enhanced chemical vapour deposition has been assessed by using water adsorption-desorption isotherms measured by means of a quartz crystal monitor (QCM). Thin films have been deposited by using titanium tetraisopropoxide as a precursor and by changing different experimental parameters of the deposition procedure such as temperature of the substrate, pressure, and gas composition in the plasma. The films were characteristic of different microstructures that. according to their scanning electron micrographs, have been categorized as columnar, homogeneous and crystalline. They also have different refraction indices with values between 1.95 and 2.41. Water and toluene adsorption isotherms have been measured by means of a QCM monitor for the films heated in vacuum to remove the water previously adsorbed in their pores. The analysis of the adsorption-desorption isotherms by means of the so called t-plots and the determination of the pore size distribution curves rendered that the three kinds of microstructures presented different kinds of isotherms and water adsorption behaviours. Columnar films consisted of micro- and meso-pores had a very high adsorption hystheresis at low pressures. Homogeneous films only had micropores and presented no adsorption hystheresis. Crystalline films consisted of both micro- and meso-pores but had no adsorption hystheresis at low pressures. A zone scheme has been proposed to account for the microstructure of the films depending on the plasma conditions utilized. The implications of the different water adsorption behaviours of the films for the determination of their refraction indices are discussed. (C) 2008 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available