4.3 Article

Gravitational Effects on Multi-component Droplet Evaporation

Journal

MICROGRAVITY SCIENCE AND TECHNOLOGY
Volume 24, Issue 3, Pages 229-235

Publisher

SPRINGER
DOI: 10.1007/s12217-012-9303-z

Keywords

Evaporation; Multi-component; Droplet; Microgravity

Ask authors/readers for more resources

This paper focuses on the analysis of multi-component droplet heating and evaporation under microgravity and normal gravity conditions. This analysis is based on the conventional conservation equations of species and energy for the gas phase, and the energy balance equation at the liquid-gas interface. The species diffusion is based on the Hirschfelder law, rather than on the less general Fick's equation. Moreover, the heat flux due to species diffusion is taken into account in addition to the classical conduction heat flux between the gas and the liquid droplets. The liquid phase analysis is based on the infinite thermal conductivity liquid phase model, which has been justified by a reasonably good agreement between the predicted and experimental results. Indeed, the developed evaporation model has been validated against experimental data reported by Chauveau et al. (2008), where the droplets evaporation has been observed in microgravity and normal gravity conditions. The effects of gravity have been taken into account by introducing the Grashof number in the expressions of the Sherwood and Nusselt numbers. This model has been implemented in the multidimensional IFP-C3D industrial software. The modeling and experimental results have been shown to be reasonably close and the gravitational effects have been revealed to be significant especially for multi-component liquids including heavy components.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available