4.5 Article

Numerical study of seed bubble-triggered evaporation heat transfer in a single microtube

Journal

MICROFLUIDICS AND NANOFLUIDICS
Volume 16, Issue 1-2, Pages 347-360

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10404-013-1205-x

Keywords

Seed bubble; Microchannel; Thermal non-equilibrium; Flow pattern; Heat transfer

Funding

  1. Natural Science Foundation of China [51210011]
  2. National Natural Science Foundation of China [U1034004, 51106049]
  3. National Natural Science Foundation of Guangdong Province [U1034004]

Ask authors/readers for more resources

High boiling incipience temperature and flow instabilities in silicon-based microchannels with smooth surface are challenging issues. This work numerically investigates the seed bubble-triggered evaporation heat transfer in a microtube, with a length of 5.0 mm and diameter of 106 mu m. Acetone was the working fluid. Seed bubbles were assumed to be generated periodically at the microtube upstream. The fixed grid allocation technique was proposed to successfully perform the parallel computation via a set of computer core solvers. It is found that the seed bubble-guided heat transfer consists of a start-up stage and a steady operation stage. The start-up time equals to the residence time of the first seed bubble growing and traveling in the microtube. The seed bubble frequency is a key parameter to influence the performance. Low-frequency seed bubbles cause alternative flow patterns of liquid flow and elongated bubble flow, corresponding to the apparent spatial-time oscillations of wall and bulk fluid superheats. High-frequency seed bubbles result in quasi-stable elongated bubble flow, corresponding to quasi-uniform and stable wall and fluid superheats. There is a saturation seed bubble frequency beyond which no further performance improvement can be made. There are residual fluid superheats specifying the required minimum superheats to sustain the evaporation heat transfer between the two phases. Elongated bubbles with thin liquid films are responsible for the heat transfer enhancement. Contrary to wall temperatures, the transient local Nusselt numbers are slightly changed due to the fact that heat transfer is more closely related to the dynamic elongated bubble flow evolution within millisecond timescale in the microchannel. The heat transfer coefficients can be 2.0 to 3.5 times of that for the superheated liquid flow before seed bubble injections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available