4.5 Article

A three-dimensional microfluidic tumor cell migration assay to screen the effect of anti-migratory drugs and interstitial flow

Journal

MICROFLUIDICS AND NANOFLUIDICS
Volume 14, Issue 6, Pages 969-981

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10404-012-1104-6

Keywords

3D cell migration; Microfluidics; Anti-migratory drugs; Interstitial flow

Funding

  1. Japan Science and Technology Agency
  2. Japan Society for Promotion of Science [22680037, G2212]
  3. US National Cancer Institute [R21CA140096]
  4. Ministry of Education, Science and Technology [2009-00631, 2012-0009565]
  5. Human Resources Development program [20124010203250]
  6. Grants-in-Aid for Scientific Research [24659591, 23501270, 24390304, 22680037, 25293289, 25282135] Funding Source: KAKEN

Ask authors/readers for more resources

Most anti-cancer drug screening assays are currently performed in two dimensions, on flat, rigid surfaces. However, there are increasing indications that three-dimensional (3D) platforms provide a more realistic setting to investigate accurate morphology, growth, and sensitivity of tumor cells to chemical factors. Moreover, interstitial flow plays a pivotal role in tumor growth. Here, we present a microfluidic 3D platform to investigate behaviors of tumor cells in flow conditions with anti-migratory compounds. Our results show that interstitial flow and its direction have significant impact on migration and growth of hepatocellular carcinoma cell lines such as HepG2 and HLE. In particular, HepG2/HLE cells tend to migrate against interstitial flow, and their growth increases in interstitial flow conditions regardless of the flow direction. Furthermore, this migratory activity of HepG2 cells is enhanced when they are co-cultured with human umbilical vein endothelial cells. We also found that migration activity of HepG2 cells attenuates under hypoxic conditions. In addition, the effect of Artemisinin, an anti-migratory compound, on HepG2 cells was quantitatively analyzed. The microfluidic 3D platform described here is useful to investigate more accurately the effect of anti-migratory drugs on tumor cells and the critical influence of interstitial flow than 2D culture models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available