4.5 Article

Hydrodynamic cavitation in micro channels with channel sizes of 100 and 750 micrometers

Journal

MICROFLUIDICS AND NANOFLUIDICS
Volume 12, Issue 1-4, Pages 499-508

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10404-011-0891-5

Keywords

Hydrodynamic cavitation; Microfluidics; Chlorohydrocarbons; Radicals; CFD

Funding

  1. Dutch Technology Foundation STW [7391]
  2. Bunova
  3. Intelligent Laser Applications
  4. KWR
  5. Micronit

Ask authors/readers for more resources

Decreasing the constriction size and residence time in hydrodynamic cavitation is predicted to give increased hot spot temperatures at bubble collapse and increased radical formation rate. Cavitation in a 100 x 100 mu m(2) rectangular micro channel and in a circular 750 mu m diameter milli channel has been investigated with computational fluid dynamics software and with imaging and radical production experiments. No radical production has been measured in the micro channel. This is probably because there is no spherically symmetrical collapse of the gas pockets in the channel which yield high hot spot temperatures. The potassium iodide oxidation yield in the presence of chlorohydrocarbons in the milli channel of up to 60 nM min(-1) is comparable to values reported on hydrodynamic cavitation in literature, but lower than values for ultrasonic cavitation. These small constrictions can create high apparent cavitation collapse frequencies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available