4.5 Article

Equilibrium molecular dynamics studies on nanoscale-confined fluids

Journal

MICROFLUIDICS AND NANOFLUIDICS
Volume 11, Issue 3, Pages 269-282

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10404-011-0794-5

Keywords

Wall-force field; Pressure; Normal stresses; Surface and particle virial

Funding

  1. National Science Foundation [DMS 0807983]

Ask authors/readers for more resources

Fluid behavior within nanoscale confinements is studied for argon in dilute gas, dense gas, and liquid states. Molecular dynamics simulations are used to resolve the density and stress variations within the static fluid. Normal stress calculations are based on the Irving-Kirkwood method, which divides the stress tensor into its kinetic and virial parts. The kinetic component recovers pressure based on the ideal-gas law. The particle-particle virial increases with increased density, whereas the surface-particle virial develops because of the surface-force field effects. Normal stresses within nanoscale confinements show anisotropy primarily induced by the surface-force field and local variations in the fluid density near the surfaces. For dilute and dense gas cases, surface-force field that extends typically 1 nm from each wall induces anisotropic normal stress. For liquid case, this effect is further amplified by the density fluctuations that extend beyond the force field penetration region. Outside the wall-force field penetration and density fluctuation regions, the normal stress becomes isotropic and recovers the thermodynamic pressure, provided that sufficiently large force cut-off distances are used in the computations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available