4.5 Article

Valveless micropump with acoustically featured pumping chamber

Journal

MICROFLUIDICS AND NANOFLUIDICS
Volume 8, Issue 4, Pages 549-555

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10404-009-0533-3

Keywords

Micropump; Microfluidics; Acoustic actuation

Funding

  1. Nanyang Technological University, Singapore

Ask authors/readers for more resources

This article presents a new design of a valveless micropump. The pump consists of a nozzle-shaped actuation chamber with acoustic resonator profile, which functions as both pumping chamber and flow rectification structure. The pump is fabricated by lamination of layers made of polymethyl-methacrylate (PMMA) and dry adhesives, and is driven by a piezoelectric disk. The performance of the pump has been studied by both experimental characterization and numerical simulations. Both the experimental and numerical results show that the pump works well at low frequencies of 20-100 Hz to produce relatively high backpressures and flowrates. Moreover, the numerical simulations show that in the pumping frequency range, the flow patterns inside the chamber are found to be asymmetric in one pumping cycle so as to create a net flowrate, while outside the pumping frequency range, the flow patterns become symmetric in the pumping cycle. The pumping frequency can be shifted by modifying the pump configuration and dimensions. The pump is suitable for microfluidic integrations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available