4.3 Article Proceedings Paper

Time dependent dielectric breakdown physics - Models revisited

Journal

MICROELECTRONICS RELIABILITY
Volume 52, Issue 9-10, Pages 1753-1760

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.microrel.2012.06.007

Keywords

-

Ask authors/readers for more resources

Time-Dependent Dielectric Breakdown (TDDB) models for silica(SiO2)-based dielectrics are revisited so as to better understand the ability of each model to explain quantitatively the generally accepted TDDB observations. Molecular dielectric degradation models, which lead to percolation path generation and eventual TDDB failure, tend to fall into three broad categories: field-based models, current-based models, and complementary combinations of field and current-based models. A complementary combination of field-induced polar-bond stretching and current-induced bond-catalysis seems to be required, at the molecular level, to explain the generally accepted TDDB observations. Thus, TDDB modeling is not simply the use of field or current - but both. Complementary combinations of field and current are required to fully explain the generally accepted TDDB observations. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available