4.1 Article

Vigorous Exercise Training Improves Reactivity of Cerebral Arterioles and Reduces Brain Injury Following Transient Focal Ischemia

Journal

MICROCIRCULATION
Volume 21, Issue 6, Pages 516-523

Publisher

WILEY-BLACKWELL
DOI: 10.1111/micc.12127

Keywords

ADP; NMDA; pial arterioles; middle cerebral artery occlusion; ischemia; reperfusion

Funding

  1. National Heart, Lung and Blood Institute [HL-090657]
  2. LSU Health Sciences Center-Shreveport

Ask authors/readers for more resources

Objective Our objective was to examine whether vigorous exercise training (VExT) could influence nitric oxide synthase (NOS)-dependent vasodilation and transient focal ischemia-induced brain injury. Rats were divided into sedentary (SED) or VExT groups. Materials and Methods Exercise was carried out 5 days/week for a period of 8-10 weeks. First, we measured responses of pial arterioles to an eNOS-dependent (ADP), an nNOS-dependent (NMDA) and a NOS-independent (nitroglycerin) agonist in SED and VExT rats. Second, we measured infarct volume in SED and VExT rats following middle cerebral artery occlusion (MCAO). Third, we measured superoxide levels in brain tissue of SED and VExT rats under basal and stimulated conditions. Results We found that eNOS- and nNOS-dependent, but not NOS-independent vasodilation, was increased in VExT compared to SED rats, and this could be inhibited with L-NMMA in both groups. In addition, we found that VExT reduced infarct volume following MCAO when compared to SED rats. Further, superoxide levels were similar in brain tissue from SED and VExT rats under basal and stimulated conditions. Conclusions We suggest that VExT potentiates NOS-dependent vascular reactivity and reduces infarct volume following MCAO via a mechanism that appears to be independent of oxidative stress, but presumably related to an increase in the contribution of nitric oxide.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available