4.7 Article

Solvothermal synthesis of phosphorus and nitrogen doped carbon quantum dots as a fluorescent probe for iron(III)

Journal

MICROCHIMICA ACTA
Volume 185, Issue 10, Pages -

Publisher

SPRINGER WIEN
DOI: 10.1007/s00604-018-3002-4

Keywords

Carbon quantum dots (CQDs); Ferric ions; Phosphorus doping; Nitrogen doping; Fluorescent probe; Photo-electron transfer; Cyclic voltammetry

Funding

  1. ministry of higher education and scientific research in Kurdistan

Ask authors/readers for more resources

Carbon quantum dots (CQDs) doped with phosphorus and nitrogen were prepared via a hydrothermal method starting from citric acid, urea and phosphoric acid in dimethylformamide solution. The size, morphology, surface composition, energy levels, and optical properties of the CQDs were characterized. They show both green down-conversion and up-conversion fluorescence. Ferric ions (Fe3+) are found to quench the fluorescence. Cyclic voltammetry was used to identify the HOMO and LUMO levels of the doped CQDs. The quenching mechanism, as confirmed by energy level calculations and absorption spectra, can be attributed to the selective coordination of Fe3+ by the surface functional groups on the CQDs. This facilitates the photo-induced electron transfer from the CQDs to the d orbitals of Fe3+. The CQDs are shown to be viable fluorescent probes for determination of Fe3+ with high selectivity and sensitivity. The assay has a linear response in the 0.1M to 0.9 M Fe3+ concentration range and a 50nM as limit of detection (at a S/N ratio of 3).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available