4.7 Article

Preparation and characterization of molecularly imprinted microspheres for selective extraction of trace melamine from milk samples

Journal

MICROCHIMICA ACTA
Volume 174, Issue 1-2, Pages 191-199

Publisher

SPRINGER WIEN
DOI: 10.1007/s00604-011-0613-4

Keywords

Molecular imprinted microspheres (MIMs); Melamine; Extraction; Milk sample

Funding

  1. National Natural Science Foundation of China (NSFC) [20675054, 20835003]

Ask authors/readers for more resources

We describe molecularly imprinted microspheres (MIMs) for the selective extraction of melamine from milk. The MIMs were made from melamine as the template molecule, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the linking agent. The MIMs were synthesized by suspension polymerization and characterized by rebinding experiments. They displayed high adsorption capacity, fast rebinding kinetics, and highly specific rebinding of melamine. The imprinting factor is 4.1. Scatchard analysis revealed a one-type rebinding behavior, the dissociation constant and maximum rebinding capacity being 37.59 g L-1 and 30.85 mu mol g(-1), respectively. The MIMs exhibited a 25% cross-reactivity towards atrazine, but less than 3.0% towards prometryn, clenbuterol and metronidazole. In addition, a MIM-based solid phase extraction (MISPE) column for melamine was prepared by packing MIMs into a common SPE cartridge. The MISPE extraction gave recoveries of 89.8 to 100.6% of melamine, with relative standard deviations of 5.9 to 7.5%. There was no significant loss of rebinding capacity after more than 60 repeated uses, thus demonstrating the high stability of the MISPE column. The MSPE column also was applied to the extraction of melamine from spiked liquid and powdered milk with satisfying accuracy and precision.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available