4.2 Article

Single nucleotide polypmorphisms of fimH associated with adherence and biofilm formation by serovars of Salmonella enterica

Journal

MICROBIOLOGY-SGM
Volume 157, Issue -, Pages 3162-3171

Publisher

MICROBIOLOGY SOC
DOI: 10.1099/mic.0.051425-0

Keywords

-

Categories

Funding

  1. National Institutes of Health, Bethesda, MD, USA [RO1 GM084318, RO1 AI0746993]

Ask authors/readers for more resources

Type 1 fimbriae produced by serovars of Salmonella are characterized by their ability to agglutinate guinea pig erythrocytes in the absence of D-mannose but not in its presence. The FimH protein is the adhesin that mediates this reaction; it is distinct from the major fimbrial protei.n (FimA) that composes the fimbrial shaft. Avian-adapted serovars of Salmonella produce non-haemagglutinating fimbriae that have been reported to mediate adherence to avian cells. A single amino acid substitution is present in the FimH adhesin of these strains compared to that of a Typhimurium isolate. Also, previous studies have shown that single nucleotide polymorphisms in two strains of the Typhimurium fimH alter the binding specificity. We therefore investigated the allelic variation of fimH from a range of serotypes (both host-adapted and non-host-adapted) and isolates of Salmonella. Most FimH adhesins mediated the mannose-sensitive haemagglutination of guinea pig erythrocytes, but many did not facilitate adherence to HEp-2 cells. A small number of isolates also produced fimbriae but did not mediate adherence to either cell type. Transformants possessing cloned fimH genes exhibited a number of different substitutions within the predicted amino acid sequence of the FimH polypeptide. No identical FimH amino sequence was found between strains that adhere to erythrocytes and/or HEp-2 cells and those produced by non-adherent strains. FimH-mediated adherence to HEp-2 cells was invariably associated with the ability to form biofilms on mannosylated bovine serum albumin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available