4.2 Article

Assembly of outer-membrane proteins in bacteria and mitochondria

Journal

MICROBIOLOGY-SGM
Volume 156, Issue -, Pages 2587-2596

Publisher

SOC GENERAL MICROBIOLOGY
DOI: 10.1099/mic.0.042689-0

Keywords

-

Categories

Funding

  1. Netherlands Councils for Chemical Sciences (CW) and for Earth and Life Sciences (ALW)
  2. Netherlands Organization for Scientific Research (NWO)
  3. European Community
  4. la Fondation de la Recherche Medicale

Ask authors/readers for more resources

The cell envelope of Gram-negative bacteria consists of two membranes separated by the periplasm. In contrast with most integral membrane proteins, which span the membrane in the form of hydrophobic a-helices, integral outer-membrane proteins (OMPs) form beta-barrels. Similar beta-barrel proteins are found in the outer membranes of mitochondria and chloroplasts, probably reflecting the endosymbiont origin of these eukaryotic cell organelles. How these beta-barrel proteins are assembled into the outer membrane has remained enigmatic for a long time. In recent years, much progress has been reached in this field by the identification of the components of the OMP assembly machinery. The central component of this machinery, called Omp85 or BamA, is an essential and highly conserved bacterial protein that recognizes a signature sequence at the C terminus of its substrate OMPs. A homologue of this protein is also found in mitochondria, where it is required for the assembly of beta-barrel proteins into the outer membrane as well. Although accessory components of the machineries are different between bacteria and mitochondria, a mitochondrial beta-barrel OMP can be assembled into the bacterial outer membrane and, vice versa, bacterial OMPs expressed in yeast are assembled into the mitochondrial outer membrane. These observations indicate that the basic mechanism of OMP assembly is evolutionarily highly conserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available