4.3 Article

Phylogenetic analysis of a microbial community involved in anaerobic oxidation of ammonium nitrogen

Journal

MICROBIOLOGY
Volume 79, Issue 2, Pages 237-246

Publisher

MAIK NAUKA/INTERPERIODICA/SPRINGER
DOI: 10.1134/S0026261710020165

Keywords

ANAMMOX; DEAMOX; Planctomycetes; phylogeny; 16S rRNA genes; sequence analysis

Categories

Funding

  1. Biothane Systems International (Delft, The Netherlands)
  2. Ministry of Science of the Russian Federation [02.552.11.7073]

Ask authors/readers for more resources

The phylogenetic diversity of a microbial community involved in anaerobic oxidation of ammonium nitrogen in the DEAMOX process was studied. Analysis of clone libraries containing 16S rRNA gene inserts of Bacteria, (including Planctomycetes) and Archaea revealed the presence of nucleotide sequences of the microorganisms involved in the main reactions of the carbon, nitrogen, and sulfur cycles, including nitrifying, denitrifying, and ANAMMOX bacteria. In the bacterial clone library, 16S rRNA gene sequences of representatives of the phyla Proteobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Verrucomicrobia, Lentisphaerae, Spirochaetales, and Planctomycetes, as well as of some new groups, were detected. In the archaeal clone library, nucleotide sequences of methanogens belonging to the orders Methanomicrobiales, Methanobacteriales, and Methanosarcinales were found. It is possible that both ANAMMOX bacteria and bacteria of the genus Nitrosomonas are involved in anaerobic ammonium oxidation in the DEAMOX reactor. Many sequences were similar to those from the clone libraries obtained previously from the ANAMMOX community of marine sediments. It is also probable that the DEAMOX reactions occur in natural ecosystems (in marine and freshwater sediments and the oceanic water column), thereby providing for the coupling of the nitrogen and sulfur cycles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available