4.7 Article

Marine Bacterioplankton Diversity and Community Composition in an Antarctic Coastal Environment

Journal

MICROBIAL ECOLOGY
Volume 63, Issue 1, Pages 210-223

Publisher

SPRINGER
DOI: 10.1007/s00248-011-9904-x

Keywords

-

Funding

  1. Italian Ministry of Education and Research [PNRA 2004/1.6]
  2. MNA (Museo Nazionale dell'Antartide)

Ask authors/readers for more resources

The bacterial community inhabiting the water column at Terra Nova Bay (Ross Sea, Antarctica) was examined by the fluorescent in situ hybridization (FISH) technique and the genotypic and phenotypic characterization of 606 bacterial isolates. Overall, the FISH analysis revealed a bacterioplankton composition that was typical of Antarctic marine environments with the Cytophaga/Flavobacter (CF) group of Bacteroidetes that was equally dominant with the Actinobacteria and Gammaproteobacteria. As sampling was performed during the decay of sea-ice, it is plausible to assume the origin of Bacteroidetes from the sea-ice compartment where they probably thrive in high concentration of DOM which is efficiently remineralized to inorganic nutrients. This finding was supported by the isolation of Gelidibacter, Polaribacter, and Psychroflexus members (generally well represented in Antarctic sea-ice) which showed the ability to hydrolyze macromolecules, probably through the production of extracellular enzymes. A consistently pronounced abundance of the Gammaproteobacteria (67.8%) was also detected within the cultivable fraction. Altogether, the genera Psychromonas and Pseudoalteromonas accounted for 65.4% of total isolates and were ubiquitous, thus suggesting that they may play a key role within the analyzed bacterioplankton community. In particular, Pseudoalteromonas isolates possessed nitrate reductase and were able to hydrolyze substrates for protease, esterase, and beta-galactosidase, thus indicating their involvement in the carbon and nitrogen cycling. Finally, the obtained results highlight the ability of the Actinobacteria to survive and proliferate in the Terra Nova Bay seawater as they generally showed a wide range of salt tolerance and appeared to be particularly competitive with strictly marine bacteria by better utilizing supplied carbon sources.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available