4.7 Article

Isolation and Characterization of Beneficial Bacteria Associated with Citrus Roots in Florida

Journal

MICROBIAL ECOLOGY
Volume 62, Issue 2, Pages 324-336

Publisher

SPRINGER
DOI: 10.1007/s00248-011-9822-y

Keywords

-

Funding

  1. Florida Citrus Production Research Advisory Council (FCPRAC)

Ask authors/readers for more resources

Cultivable diversity of bacteria associated with citrus was investigated as part of a larger study to understand the roles of beneficial bacteria and utilize them to increase the productive capacity and sustainability of agro-ecosystems. Citrus roots from Huanglongbing (HLB) diseased symptomatic and asymptomatic citrus were used in this study. A total of 227 and 125 morphologically distinct colonies were isolated and characterized from HLB asymptomatic and symptomatic trees, respectively. We observed that the frequency of bacterial isolates possessing various plant beneficial properties was significantly higher in the asymptomatic samples. A total of 39 bacterial isolates showing a minimum of five beneficial traits related to mineral nutrition [phosphate (P) solubilization, siderophore production, nitrogen (N) fixation], development [indole acetic acid (IAA) synthesis], health [production of antibiotic and lytic enzymes (chitinase)], induction of systemic resistance [salicylic acid (SA) production], stress relief [production of 1-amino-cyclopropane-1-carboxylate deaminase] and production of quorum sensing [N-acyl homoserine lactones] signals were characterized. A bioassay using ethidium monoazide (EMA)-qPCR was developed to select bacteria antagonistic to Candidatus Liberibacter asiaticus. Using the modified EMA-qPCR assay, we found six bacterial isolates showing maximum similarity to Paenibacillus validus, Lysinibacillus fusiformis, Bacillus licheniformis, Pseudomonas putida, Microbacterium oleivorans, and Serratia plymutica could significantly reduce the population of viable Ca. L. asiaticus in HLB symptomatic leaf samples. In conclusion, we have isolated and characterized multiple beneficial bacterial strains from citrus roots which have the potential to enhance plant growth and suppress diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available