4.2 Article

Evolution of Amoxicillin Resistance of Helicobacter pylori In Vitro: Characterization of Resistance Mechanisms

Journal

MICROBIAL DRUG RESISTANCE
Volume 20, Issue 6, Pages 509-516

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/mdr.2014.0019

Keywords

-

Funding

  1. Division of Biomedical Sciences, School of Medicine, University of California, Riverside

Ask authors/readers for more resources

Helicobacter pylori is the major cause of peptic ulcers and gastric cancer in humans. Treatment involves a two or three drug cocktail, typically including amoxicillin. Increasing levels of resistance to amoxicillin contribute to treatment failures, and higher levels of resistance are believed to be due to multiple genetic mutations. In this study, we examined the progression of spontaneous genetic mutations that contribute to amoxicillin resistance in H. pylori when exposed to increasing concentrations of amoxicillin in vitro. During the selection process, we isolated five strains each of which had progressively higher levels of resistance. Using a whole genome sequencing approach, we identified mutations in a number of genes, notably pbp1, pbp2, hefC, hopC, and hofH, and by sequencing these genes in each isolate we were able to map the order and gradual accumulation of mutations in these isolates. These five isolates, each expressing multiple mutated genes and four transformed strains expressing individually mutated pbp1, hefC, or hofH, were characterized using minimum inhibitory concentrations, amoxicillin uptake, and efflux studies. Our results indicate that mutations in pbp1, hefC, hopC, hofH, and possibly pbp2 contribute to H. pylori high-level amoxicillin resistance. The data also provide evidence for the complexity of the evolution of amoxicillin resistance in H. pylori and indicate that certain families of genes might be more susceptible to amoxicillin resistance mutations than others.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available