4.7 Article

Characterization of a thermostable β-glucosidase from Aspergillus fumigatus Z5, and its functional expression in Pichia pastoris X33

Journal

MICROBIAL CELL FACTORIES
Volume 11, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1475-2859-11-25

Keywords

-

Funding

  1. China Science and Technology Ministry [2011CB100503]
  2. Priorty Academic Program Development of Jiangsu Higher Education Institutions
  3. Fundamental Research Funds for the Central Universities [KYZ201003]

Ask authors/readers for more resources

Background: Recently, the increased demand of energy has strongly stimulated the research on the conversion of lignocellulosic biomass into reducing sugars for the subsequent production, and beta-glucosidases have been the focus because of their important roles in a variety fundamental biological processes and the synthesis of useful beta-glucosides. Although the beta-glucosidases of different sources have been investigated, the amount of beta-glucosidases are insufficient for effective conversion of cellulose. The goal of this work was to search for new resources of beta-glucosidases, which was thermostable and with high catalytic efficiency. Results: In this study, a thermostable native beta-glucosidase (nBgl3), which is secreted by the lignocellulose-decomposing fungus Aspergillus fumigatus Z5, was purified to electrophoretic homogeneity. Internal sequences of nBgl3 were obtained by LC-MS/MS, and its encoding gene, bgl3, was cloned based on the peptide sequences obtained from the LC-MS/MS results. bgl3 contains an open reading frame (ORF) of 2622 bp and encodes a protein with a predicted molecular weight of 91.47 kDa; amino acid sequence analysis of the deduced protein indicated that nBgl3 is a member of the glycoside hydrolase family 3. A recombinant beta-glucosidase (rBgl3) was obtained by the functional expression of bgl3 in Pichia pastoris X33. Several biochemical properties of purified nBgl3 and rBgl3 were determined - both enzymes showed optimal activity at pH 6.0 and 60 degrees C, and they were stable for a pH range of 4-7 and a temperature range of 50 to 70 degrees C. Of the substrates tested, nBgl3 and rBgl3 +/- 7.1 and 101.7 +/- 5.2 U mg(-1), respectively. However, these enzymes were inactive toward carboxymethyl cellulose, lactose and xylan. Conclusions: An native beta-glucosidase nBgl3 was purified to electrophoretic homogeneity from the crude extract of A. fumigatus Z5. The gene bgl3 was cloned based on the internal sequences of nBgl3 obtained from the LC-MS/MS results, and the gene bgl3 was expressed in Pichia pastoris X33. The results of various biochemical properties of two enzymes including specific activity, pH stability, thermostability, and kinetic properties (Km and Vmax) indicated that they had no significant differences.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available