4.6 Article

Relative contribution of Panton-Valentine leukocidin to PMN plasma membrane permeability and lysis caused by USA300 and USA400 culture supernatants

Journal

MICROBES AND INFECTION
Volume 12, Issue 6, Pages 446-456

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.micinf.2010.02.005

Keywords

Staphylococcus aureus; Virulence; Leukocidins

Funding

  1. National Institute of Allergy and Infectious Diseases, National Institutes of Health

Ask authors/readers for more resources

Panton-Valentine leukocidin (PVL) is a cytolytic toxin associated with severe community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections. However, the relative contribution of PVL to host cell lysis during CA-MRSA infection remains unknown. Here we investigated the relative contribution of PVL to human polymorphonuclear leukocyte (PMN) plasma membrane permeability and lysis in vitro by using culture supernatants from wild-type and isogenic lukS/F-PV negative (Delta pvl) USA300 and USA400 strains. Using S. aureus culture conditions that favor selective high production of PVL (CCY medium), there was on average more PMN plasma membrane permeability and cell lysis caused by supernatants derived from wild-type strains compared with those from Delta pvl strains. Unexpectedly, plasma membrane permeability did not necessarily correlate with ultimate cell lysis. Moreover, the level of pore formation caused by culture supernatants varied dramatically (e.g., range was 0.32-99.09% for wild-type USA300 supernatants at 30 min) and was not attributable to differences in PMN susceptibility to PVL among human blood donors. We conclude that PMN pore formation assays utilizing S. aureus culture supernatants have limited ability to estimate the relative contribution of PVL to pathogenesis (or cytolysis in vitro or in vivo), especially when assayed using culture media that promote selective high production of PVL. Published by Elsevier Masson SAS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available