4.1 Review

Microbial Contribution to Global Iodine Cycling: Volatilization, Accumulation, Reduction, Oxidation, and Sorption of Iodine

Journal

MICROBES AND ENVIRONMENTS
Volume 23, Issue 4, Pages 269-276

Publisher

JAPANESE SOC MICROBIAL ECOLOGY, DEPT BIORESOURCE SCIENCE
DOI: 10.1264/jsme2.ME08548

Keywords

iodine; radionuclide; ozone destruction; biogeochemical cycling; microorganisms

Funding

  1. KAKEN [20780049]

Ask authors/readers for more resources

Iodine is an essential trace element for humans and animals because of its important role as a constituent of thyroid hormones. If the anthropogenic iodine-129 (I-129, half-life: 1.6x 10(7) years), which is released from nuclear facilities into the environment and has a long half-life, participates in the biogeochemical cycling of iodine, it potentially accumulates in the human thyroid gland and might cause thyroid cancer. Therefore, it is necessary to obtain better information on the behavior of iodine in the environment for accurate safety assessments of I-129. Major pathways of iodine cycling are the volatilization of organic iodine compounds into the atmosphere, accumulation of iodine in living organisms, oxidation and reduction of inorganic iodine species, and sorption of iodine by soils and sediments. Considerable geochemical evidence has indicated that these processes are influenced or controlled by microbial activities, although the precise mechanisms involved are still unclear. This review summarizes current knowledge on interactions between microorganisms and iodine, with special emphasis on newly isolated bacteria possibly contributing to the cycling of iodine on a global scale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available