4.7 Article

Genetic tools for multicolor imaging in zebrafish larvae

Journal

METHODS
Volume 62, Issue 3, Pages 279-291

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymeth.2013.07.028

Keywords

Zebrafish; Imaging; Fluorescent protein; Gal4; Cell biology

Ask authors/readers for more resources

Zebrafish gain increasing popularity as animal model for the study of various aspects of modern cell biology as well as model organism for human diseases. This is owed to the fact that zebrafish represent a cost effective and versatile in vivo alternative to in vitro cell culture systems and to invertebrate- and classic rodent models as they combine many strengths of each of these systems. Zebrafish with their small size and rapid embryonic development can be maintained at relatively low costs with females giving rise to more than hundred eggs per week, thus allowing for the efficient analysis of cellular and subcellular processes. Moreover, such analysis can be performed using sophisticated imaging techniques, and transgenic zebrafish lines that express any gene of interest can be generated relatively easily. Among other advantages, the powerful genetic tractability of this vertebrate model organism combined with the in vivo multicolor imaging options make zebrafish unique for addressing questions of in vivo cell biology in vertebrates. In this article we outline these options by reviewing recent advances in zebrafish genetics with focus on the molecular tools and methods that are currently established for the use of zebrafish for multicolor imaging. (C) 2013 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available