4.7 Article

Genome-wide mapping of nucleosome positions in Schizosaccharomyces pombe

Journal

METHODS
Volume 48, Issue 3, Pages 218-225

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymeth.2009.02.004

Keywords

Schizosaccharomyces pombe; Microarray; Indirect end labeling; Nucleosome position; Affymetrix; Genome-wide

Funding

  1. Swedish Cancer Society
  2. Swedish Research Council
  3. German Research Community
  4. EU

Ask authors/readers for more resources

The majority of nuclear eukaryotic DNA is packaged into nucleosome cores where DNA is wrapped tightly around histone protein octamers. Such histone bound nucleosomal DNA is less accessible than the short linker DNA between nucleosome cores or the DNA in extended nucleosome free regions. Therefore, the positions of nucleosomes relative to a DNA sequence feature, like a transactivator binding site, a transcriptional start site or an origin of replication, can have profound effects on nuclear processes like transcription, replication, recombination and repair. Now that many DNA related processes are studied in a genome-wide manner, it is increasingly important to map the basic organization of their chromosomal DNA substrate, i.e., the positions of nucleosomes, on a genome-wide scale as well. To this end, the protection of nucleosomal DNA from digestion with micrococcal nuclease (MNase) is used as an assay for the presence of a nucleosome. The MNase protected DNA fragments, so called mononucleosomal DNA, can be mapped genome-wide by hybridization to microarrays. This method has been established for Saccharomyces cerevisiae, and we present here the adaptation of the method for Schizosaccharomyces pombe. As an independent method to validate genome-wide data for individual loci, we also include a protocol for the determination of locus specific nucleosome positioning by indirect end labeling. (C) 2009 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available